
Comparison of Control Methods:
Learning Robotics Manipulation

with Contact Dynamics
Keven Wang

Computer Science
Stanford University

Email: kvw@stanford.edu

Bruce Li
Mashgin

Email: yonglisc@gmail.com

Abstract—We compare the different control methods in learn-
ing a robotic manipulation task. The task is to push an
object (a cube and sphere) from varying beginning position
to a fixed goal position. Complex contact dynamics is in-
volved. We used PPO as the learning algorithm trained from
scratch with dense rewards. Comparison is performed on two
dimensions: learning at joint level vs. end-effector level, as
well as velocity control vs. position control. For end-effector
learning, we use inverse jacobian to map from end-effector
target velocity/position to joint velocity/position, and accounting
for singularity, joint limits, and gimbal lock. Across the four
methods proposed, joint velocity control demonstrated the fastest
convergence on cube task across all control methods, and is the
only successful method on sphere task. Video demonstration:
https://www.youtube.com/watch?v=wh qV58f95Y

I. INTRODUCTION

Robotics manipulation is traditionally done using hand-
crafted local controllers. A unique controller is built for each
individual task. To repurpose the controller for a different task,
a different set of parameters, such as gains, need to be tuned by
hand. This tuning process requires expert knowledge, which
makes this approach not as scalable as desired. On the other
end of the spectrum, the learning approach commands at the
joint level, while being more generalizable, disregards classical
robotics principals such as forward and inverse kinematics.

Here we approach the robotic manipulation problem from
a learning perspective, while attempting to leverage the well-
studied principal of inverse kinematics. In particular, we com-
pare two approaches to learning: commanding joint velocity,
and commanding end-effector velocity. In the second case of
end-effector velocity, we use inverse jacobian to compute the
joint velocity needed to reach the desired positions. The task
involves pushing an object task from start to goal, learned from
scratch using reinforcement learning. The only human input is
a dense reward function, which encodes the desired behavior
and is easy to interpret. The neural network is trained end-
to-end with object positions as input. The method is agnostic
to the reinforcement learning algorithm used. Through experi-
ments in simulation, we show that this method is generalizable
to variation in start or goal position of the object.

The task is to push an object from a starting position to

Fig. 1. Left: Robot Task. Right: Degree-of-Freedom.

an end position on a plane. The robot used has six degrees
of freedom rotational joints respectively. The pushing task, as
compared to a pick-and-place task, invoves complex contact
dynamics, since the object tends to rotate upon contact. The
trajectory planning aspect is also present, where the robot
needs to push the object from a starting position to a goal
position.

The contributions made in this paper include:
• Demonstrating the data efficiency and asymptotic per-

formance of learning at joint level vs. learning at end-
effector level (with inverse jacobian), as well as the
learning performance of position control vs. velocity
control.

• Demonstrating the ability of the method to handle com-
plex contact dynamics.

II. RELATED WORK

Robotics manipulation is a well studied area with plenty
of previous work. These work can be divided into two major
camps: the classical trajectory optimization based approach,
and the learning based approach.

A. Trajectory Planning

The trajectory planning based approach frame the task as
a search problem. The task is defined as follows: given a
configuration space, and an initial configuration point and a

https://www.youtube.com/watch?v=wh_qV58f95Y


goal configuration point, find the shortest path connecting the
initial and goal configuration points. The configuration space
has each dimension represented by a robot degree of freedom
(joint angle), and points as obstacles. Popular algorithms such
as Rapidly-exploring random tree LaValle [2], Probablistic
Roadmap Kavraki et al. [1] uses a sampling mechanism to iter-
atively build the path, and optionally smoothes the path. While
these solutions are probablistically complete, they are usually
computationally expensive and are done offline. In order to
perform closed-loop control, the trajectory planning needs to
be re-computed frequently at each time step. This might not
be feasible in practice depending on the dimensionality of the
configuration space (robot degree of freedoms).

Furthermore, the trajectory planning approach assumes no
contact between the robot and the environment. This does not
handle pushing, where the end-effector and object experience
complex contact dynamics.

B. Reinforcement Learning

On the other end of the spectrum, there is the learning
approach which uses a reward function to reinforce a robot
toward the desired behavior, such as in Lee et al. [3], Levine
et al. [4]. There has been existing work that learn a visuomo-
tor policy end-to-end. While previous work in this category
produces a potentially more general policy with respect to
different configurations, there are two main limitations with
the current approaches.

• Firstly, the learning approach disregards classical robotics
principals, such as forward kinematics and inverse kine-
matics. The learning approach commands joint velocity
or position, and learns kinematics from scratch. This
requires a large amount of data. One question this paper
tries to answer is that, by leveraging existing analytical
formulation to inverse-kinematics, can learning be more
data-efficient?

• Secondly, the existing attempts deal with relatively simple
dynamics moving from point A to point B, without in-
volving complex contact dynamics. This paper addresses
the this limitation by introducing pushing task, which in-
volves complex contact dynamics between end-effectory
and object.

C. Proximal Policy Optimization

Proximal Policy Optimization Schulman et al. [7] has
achieved state-of-the-art results recently on continuous control
tasks in mujoco environment. The PPO algorithm is similar
to Trust Region Policy Optimization Schulman et al. [6]
in the constrained policy update, but avoids the constrained
optimization problem and is therefore easier to implement.
The PPO algorithm computes the following loss. The key
contribution of PPO is to bound the ratios between new and
old policy action probability, to avoid a large update. In our
experiment, we used ε = 0.2. We chose entropy coefficient
0.001 to encourage exploration.

LCLIP (θ) = Êt
[
min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)

]
(1)

Where

rt(θ) =
πθnew

(at | st)
πθold(at | st)

(2)

The PPO paper also suggested an optional KL penalty, to
further discourage a large policy update. The loss is defined
as follows. In our experiment, we find a fixed β works better
than the adaptive case, and added the KL penalty to our loss
function. We chose β = 0.01 through hyper-parameter tuning.

LKLPEN (θ) = LCLIP − Êt [βKL[πθold , πθnew
]] (3)

D. Jacobian, Inverse Kinematics, Singularity

A jacobian maps from robot’s joint velocity to end-effector
velocity.

J =
de

dθ
(4)

=


∂ex
∂θ1

∂ex
∂θ2

· · · ∂ex
∂θM

∂ey
∂θ1

∂ey
∂θ2

· · · ∂ey
∂θM

∂ez
∂θ1

∂ez
∂θ2

· · · ∂ez
∂θM

 (5)

In the equation above, e represents configuration (cartesian
positions) of end-effector. θ represents joint angles. In this
experiment, we want to control the end-effector velocity, based
on which to compute the joint velocity. To achieve this, the
inverse jacobian is needed:

dθ = J−1de (6)

However, a jacobian is not necessarily a square matrix. The
pseudo inverse is used:

J+ = (JTJ)−1JT (7)
dθ = J+de (8)

A robot reaches singularity, when two joints line up, so that
the robot loses one degree of freedom. This cases the jacobian
matrix to lose a rank, and becomes un-invertible. When a
robot is near singularity, the jacobian value will become very
large, and cause a small movement in the end-effector to result
in large joint velocity. To alleviate the singularity problem,
we use the damped least-squares Wampler [9] Nakamura and
Hanafusa [5] method:

dθ = JT (JJT + λ2I)−1de (9)

Here we choose λ = 0.01. Even with the above formulation,
the robot can still approach singularity, around which the joint
velocity becomes large. In the experiments, we normalize the



joint velocities, such that the largest joint velocity element is
one radians per second.

dθ = [dθ1, dθ2, · · · , dθM ] (10)

dθnormed = [
dθ1

max(dθ)
,

dθ2
max(dθ)

, · · · , dθM
max(dθ)

] (11)

III. APPROACH

A. Task Setup

The task involves pushing an object (cube: side 4cm, sphere:
radius 2cm) from a starting position on a plane to a goal
position. All objects are rigid, as is the limitation by the
mujoco simulation environment. The episodes has 300 time
steps, running at 50Hz. At each time step, the agent takes
current state as input, and outputs an action to move the robot,
collect the reward, and advance to the next state. The object is
allowed six degrees of freedom with constant sliding friction
coefficient of 1, and rotational friction coefficient of 0.1. The
robot is a 6 degree of freedom robot arm. The end-effector is
a thin stick of dimension (8cm x 0.5cm x 0.5cm). We chose
this end-effector because the thin stick resembles a human
fingertip. We hope that by following this biological inspiration,
our robot is capable of versatile manipulation of the object.

B. Joint Control vs. End-effector Control

In previous learning approaches to robotics manipulation,
the agent explores in joint space. As the task involves moving
the end-effector, the robot essentially needs to learn inverse
kinematics. An alternative formulation is to explore in end-
effector space, and use inverse kinematics to compute joint
velocity needed to achieve end-effector velocity. This way,
the exploration is in a linear space and potentially easier
to learn. The downside is more complex learning, and more
computation per time step, and potential unstability when robot
approaches singularity, joint limit, or gimbal lock.
• Joint control: the agent outputs joint velocity or position.

The network output action is bounded to [−1, 1], and de-
normalized to actual joint velocity/position ranges before
executing on robot.

• End-effector control: the agent outputs end-effector ve-
locity or position. The same bounding and denormaliza-
tion is performed. The end-effector velocity is mapped to
joint velocity using inverse jacobian with damped least-
squares.

C. Velocity Control vs. Position Control

Recent learning approaches have used velocity control at
joints. We experimented with both velocity and position con-
trol as follows. In the end-effector control, the control rules
are slightly more complex than the joint control case.

In the case of joint control:
• Joint velocity control: the agent outputs target velocity

(size: number of robot DOF) at each joint. We rely on
mujoco’s velocity and force controller (PD controller) to
reach the target joint velocity.

Fig. 2. Left: Joint Control. Right: End-effector Control.

• Joint position control: the agent outputs target position
(size: number of robot DOF) at each joint. We rely on
mujoco’s position and velocity controller (PD controller)
to reach the target joint position.

In the case of end-effector control:
• End-effector velocity control: the agent outputs target

cartesian velocity (size of 3) and rotational velocity (size
of 3) for the end-effector. It is mapped to joint velocity
using inverse jacobian. We use mujoco’s velocity and
force controller (PD controller) to reach the target joint
velocity.

• End-effector position control: the agent outputs target
cartisian position (size of 3) and quaternion (size of 4)
for the end-effector. At each time step, we use a pro-
portional controller to find the translational velocity and
quaternion derivative needed to reach the target position.
We then map this to joint velocity using inverse Jacobian.
Then we use mujoco’s velocity and force controller (PD
controller) to reach the target joint velocity. The reason
for using quaternion is that, it avoids the gimbal lock
issue introduced by using Euler angles.

For translational velocity:

vp =
ptarg − p

dt
(12)

(13)

where ptarg is target position, and p is current position in
cartesian coordinates.

For rotational velocity:

ω = 2q̇q−1 (14)

= 2q̇q−1 (15)

= 2
qtargq

−1

dt
q−1 (16)

Where qtarg is the target orientation expressed in quaternion.
q is the current quaternion. Both qtarg, q are unit quaternions.

D. Reward Function

This paper uses dense rewards to provide frequent feedback
in the task. The reward is given per time step, and is the sum



Fig. 3. Reward vs. Scale, Decay Parameters

of two parts:
• End-effector object reward: encourages end-effector to

approach object. Reward is exponential to negative
squared distance between end-effector and object. In
order to push the object toward the goal, the end-effector
must be in close proximity to the object.

• Object goal reward: encourages object to approach goal.
Reward is exponential to negative squared distance be-
tween object and goal.

rdist = c(e−d‖xtarg−x‖22 − 1) (17)

This reward formulation is intuitive. Each reward has two
parameters and is easily tuned:
• Scale parameter c: controls the maximum reward per time

step, if distance is zero. This can be set with the constraint
that, the discounted sum of max rewards is within a
reasonable range for the network to learn effectively. We
chose this return range to be -30 to 30.

• Decay parameter d: controls the decay rate of reward,
as distance increases. This can be set, such that at the
reset (starting) position, the reward is sufficiently small
as compared to the max reward. In our case, we chose
0.01.

In the case of end-effector control, a third reward is given
by the mean-square of computed joint velocity from inverse
jacobian. When a robot approaches singularity or joint limit,
the computed joint velocity becomes large. Therefore we place
a penalty on large joint velocity, before normalizing.

rsingularity = c(e−Et[θ2] − 1) (18)

Empirically, we found negative reward to be effective for
neural network based learning. Theoretically, the learning is
invariant to constant offset of reward as advantage is used.
However, in practice subtracting rewards by a constant yields
better learning. We hypothesize the reason being, in the
beginning of the learning, the return is very negative, which
results in larger gradient for the critic and more exploration.
As the agent learns, the return gradually approaches zero,
around which the critic loss becomes smaller and facilitates
fine-tuning of a good policy by taking smaller gradient steps.

By giving frequent rewards at each time step, we hope to
provide rapid feedback to the agent and learn the task faster.

We experimented with sparse reward, with a +1 reward at
episode end corresponding to successful task completion, and
0 otherwise. However, we had trouble learning with this sparse
reward function, since the agent is trained from scratch and
consumes no human demonstration.

E. Reinforcement Learning Algorithm

We used Proximal Policy Gradient as the reinforcement
learning algorithm. We find the KL penalty crucial to the sta-
bility of our policy. Without the KL penalty, in our experiment,
the agent would periodically take huge KL steps away from a
good policy and completely destroyes its previously successful
learning. We also experimented with adaptive KL penalty, and
found it not effective.

F. Neural Network Architecture

The agent is made of a neural network, with two fully-
connected layers of 64 neurons each. The network has the
following input and output:

Input (called “Simple” features in experiment):
• Object center of mass (size: 3)
• Joint position normalized to [−1, 1] (size: number of

DOF)
• Sine (element-wise) of joint position (size: number of

DOF)
• Cosine (element-wise) of joint position (size: number of

DOF)
For end-effector control, we add the following input feature,

in addition to the input above. Without the following features,
the end-effector control does not learn. (called “Full” features
in experiment)
• End-effector center of mass (size: 3)
• End-effector rotation (size: 3)
• Sine (element-wise) of end-effector position (size: 3)
• Cosine (element-wise) of end-effector position (size: 3)
We added sine and cosine, because these are used in rotation

computation. By adding this non-linear transform as features,
we hope the learning becomes easier. These features can be
easily computed during robot execution time.

Output:
• target velocity or position of joint or end-effector. The

neural network outputs a mean vector and a log stan-
dard deviation vector. The standard deviations are stand-
alone variables directly learned via back-prop completely
separate from the neural network. At training time, the
output is chosen by randomly sampling from a normal
distribution with zero mean and unit standard deviation,
then scaling by standard deviation and offsetting by the
mean. This sampling approach helps with exploration
during training. For the exact output definition, see ”Joint
control vs. end-effector control” for more details.

We experimented with different number of hidden layers,
and found two layers to be expressive enough to encode the
pushing policy from varying start to fixed goal position. In our
architecture, we have actor and critic network using separate



Fig. 4. Left: far configuration. Right: near configuration.

sets of weights. We experimented with shared hidden layer
weights between the two networks, and found it does not
improve performance.

IV. EXPERIMENTS

All experiments are done in Mujoco simulation environment
Todorov et al. [8] with 50 Hz control frequency.

A. Metric

We learned the task of pushing an object from start to
goal position. The performance is evaluated on the euclidean
distance from the final object position to the goal position. The
lower distance corresponds to better performance. We com-
pared the performance between position vs. velocity control,
and between joint vs. end-effector control. We evaluated the
performance on two initial end-effector positions. The reason
for the near configuration is to avoid unnecessary exploration
which might add variance to our experiment.

• Far: with all joints in neutral position (center of joint
range).

• Near: with end-effector with a short distance directly
above origin (0, 0). The end-effector is closer in prox-
imity to the object.

B. Generalization to Varying Start Configurations

We first validated our algorithm on a fixed-start, fixed-goal
position. Here we fix start position and goal position of the
cube. Our agent is able to learn the task successfully with low
final distance. Then we proceeded to vary the start position
of the cube, while fixing the goal position. At the beginning
of each episode, we uniformly sample a radius r in range
of [0cm, 7.5cm], and an angle θ in range of [0, 2π]. In other
words, we place the cube randomly in a circle, with uniform
random probability of distance from origin, and angle from
x-axis. We experimented with curriculum learning, where we
gradually increase the circle size in 1cm increments (sampling
the angle in range of [0, 2π]), and did not find it to be helpful
to learning.

Fig. 5. Sampling the initial object position inside circle

C. Position vs. Velocity Control, Joint vs. End-effector Control

We evaluated performance of the fource control methods
(joint velocity control, joint position control, end-effector vel
control, end-effector position control). Joint velocity control
learned the fastest. For end-effector control, the result is less
clear. Velocity control performed better in near configuration,
while position control performed better in far configuration.

D. Simple vs. Full Features

We also experimented with different input features for
end-effector control. For the exact definition of the features,
please refer to the secion on “Neural Network Architecture”.
We find the additional end-effector features only useful for
position control. In velocity control with near configuration,
the additional features didn’t make a significant difference in
performance. In velocity control with far configuration, the
agent did not converge regardless of the input features.

E. Sphere Object

We used a sphere object to further test the ability to handle
complex contact dynamics. A sphere has rotational inertia.
Therefore more delicate control is required to make a sphere
stop at the goal position. We performed learning with joint
control using both velocity and position control. Velocity
control is able to successfully learn the task with less than
1cm in final distance to goal, while position control is not
able to learn the task.

V. DISCUSSIONS

Across all experiments, joint velocity control demonstrates
the fastest learning, with eventual performance on par with
position control in some cases. This is likely enabled by
velocity control’s rapid feedback, allowing it to efficiently
explore the surrounding. For joint control, it is much easier
for the robot to command joint velocity than joint position.
For position control, at each time step a target position is
commanded. Therefore the robot might not have enough time
to reach the desired position. Where for velocity control, the
robot can rapidly change its target velocity at e ach time step.

End-effector control does not outperform joint control,
despite the linear exploration in cartesian and rotational space.
This is likely due to the constraints posed by singularity, joint
limits, as well as gimbal lock for end-effector position control.
Here are a few future directions to take:



Fig. 6. Final distance to goal for far configuration

Fig. 7. Final distance to goal for near configuration

• Provide appropriate teaching signal with regard to sin-
gularity, joint limits, and gimbal lock constraints, such
that the agent can receive consistent teaching signal,
learns to operate within these constraints, and to explore
effectively.

• Apply recurrent neural network to take into account
temporal dependence between states for better policy.

• Use continus image frames as input, and train additional
vision layer end-to-end for simulation to real transfer.

ACKNOWLEDGMENTS

Special thanks to Ajay Mandlekar, Michelle Lee, Julian
Gao, and Jeannette Bohg for their help.

REFERENCES

[1] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H
Overmars. Probabilistic roadmaps for path planning in
high-dimensional configuration spaces. IEEE transactions
on Robotics and Automation, 12(4):566–580, 1996.

Fig. 8. Final distance to goal for end-effector control with different input
features

Fig. 9. Final distance to goal for pushing sphere using joint control

[2] Steven M LaValle. Rapidly-exploring random trees: A
new tool for path planning. 1998.

[3] Alex X Lee, Sergey Levine, and Pieter Abbeel. Learning
visual servoing with deep features and fitted q-iteration.
arXiv preprint arXiv:1703.11000, 2017.

[4] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter
Abbeel. End-to-end training of deep visuomotor poli-
cies. Journal of Machine Learning Research, 17(39):1–40,
2016.

[5] Yoshihiko Nakamura and Hideo Hanafusa. Inverse kine-
matic solutions with singularity robustness for robot ma-
nipulator control. ASME, Transactions, Journal of Dy-
namic Systems, Measurement, and Control, 108:163–171,
1986.

[6] John Schulman, Sergey Levine, Pieter Abbeel, Michael
Jordan, and Philipp Moritz. Trust region policy optimiza-
tion. In Proceedings of the 32nd International Conference



on Machine Learning (ICML-15), pages 1889–1897, 2015.
[7] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec

Radford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[8] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco:
A physics engine for model-based control. In Intelligent
Robots and Systems (IROS), 2012 IEEE/RSJ International
Conference on, pages 5026–5033. IEEE, 2012.

[9] Charles W Wampler. Manipulator inverse kinematic so-
lutions based on vector formulations and damped least-
squares methods. IEEE Transactions on Systems, Man,
and Cybernetics, 16(1):93–101, 1986.


	Introduction
	Related Work
	Trajectory Planning
	Reinforcement Learning
	Proximal Policy Optimization
	Jacobian, Inverse Kinematics, Singularity

	Approach
	Task Setup
	Joint Control vs. End-effector Control
	Velocity Control vs. Position Control
	Reward Function
	Reinforcement Learning Algorithm
	Neural Network Architecture

	Experiments
	Metric
	Generalization to Varying Start Configurations
	Position vs. Velocity Control, Joint vs. End-effector Control
	Simple vs. Full Features
	Sphere Object

	Discussions

